国产午夜福利视频在线播放一区,伊人久久大香线蕉综合热线,国产一区二区波多野结衣,国产精品丝袜久久久久av,婷婷五月亚洲中文字开心,欧美日韩亚洲综合在线,色综合一区二区三区,国产黄色小视频91在线观看,成人片毛片AAA片免费,久久亚洲AV无码专区成人国产,国产1024香蕉在线观看

首頁 全所PI名錄
  • 楊薈
  • 研究員,RNA介導(dǎo)的基因表達(dá)調(diào)控分子機(jī)制研究
  • E-mail: yanghui@sibcb.ac.cn
  • 實驗室主頁: 
    個人簡介:
  •   2008年畢業(yè)于南京大學(xué),獲得學(xué)士學(xué)位。

      2014年畢業(yè)于中國科學(xué)院生物化學(xué)與細(xì)胞生物學(xué)研究所,獲得博士學(xué)位。

      2014年2月加入美國紀(jì)念斯隆-凱特琳癌癥中心(Memorial Sloan Kettering Cancer Center)從事博士后研究,獲2018 Tri-Institutional Breakout Prizes for Junior Investigators。

      2018年加入中國科學(xué)院生物化學(xué)與細(xì)胞生物學(xué)研究所,任研究員、研究組長、博士生導(dǎo)師。

    社會任職:
  •  
    研究方向:
  • RNA介導(dǎo)的基因表達(dá)調(diào)控分子機(jī)制研究
    研究工作:
  •   多細(xì)胞生物的基因表達(dá)調(diào)控是細(xì)胞分化、形態(tài)發(fā)生和個體發(fā)育的基礎(chǔ),調(diào)控的異常與多種疾病的發(fā)生發(fā)展密切相關(guān)?;虮磉_(dá)調(diào)控包括基因水平、轉(zhuǎn)錄水平、轉(zhuǎn)錄后水平、翻譯水平和翻譯后水平等多個層面、多種方式的綜合調(diào)控。 細(xì)胞內(nèi)存在多種類型的非編輯RNA(ncRNA),包括轉(zhuǎn)運(yùn)RNA(tRNA)、核糖體RNA(rRNA)、小RNA(如microRNA、siRNA、piRNA等)和長非編碼RNA(lncRNA)。這些非編輯RNA及其與蛋白質(zhì)組裝成的復(fù)合物參與細(xì)胞的多種活動,包括基因的表達(dá)調(diào)控,并在多種疾病和腫瘤的發(fā)生、發(fā)展過程中發(fā)揮重要功能。基于非編碼RNA產(chǎn)生RNAi和CRISPR技術(shù)等基因編輯技術(shù),可以實現(xiàn)基因表達(dá)水平調(diào)控、定點(diǎn)突變和表觀遺傳修飾改變等等。CRISPR-Cas系統(tǒng)是存在于細(xì)菌和古細(xì)菌的獲得性免疫系統(tǒng),在RNA的介導(dǎo)下,利用多種不同的核酸內(nèi)切酶序列特異性地靶向并切割DNA或者RNA分子,在構(gòu)建細(xì)胞系模型、動植物模型、基因的定點(diǎn)編輯和遺傳疾病治療等方面有廣泛的應(yīng)用前景。

      我們實驗室主要運(yùn)用結(jié)構(gòu)生物學(xué)方法,結(jié)合分子生物學(xué)和生物化學(xué)等其他技術(shù)手段,研究上述幾個方面中相關(guān)的RNA-蛋白質(zhì)復(fù)合物,在分子水平闡明其發(fā)揮功能的結(jié)構(gòu)基礎(chǔ),有助于我們了解相關(guān)疾病的分子機(jī)理,為藥物的研發(fā)以及疾病的治療提供結(jié)構(gòu)信息。未來五年,我們主要研究真核細(xì)胞中l(wèi)ncRNA與相關(guān)蛋白質(zhì)或蛋白質(zhì)復(fù)合物組裝及其在基因表達(dá)調(diào)控中發(fā)揮作用的分子機(jī)理,以及CRISPR-Cas系統(tǒng)特異性識別并切割DNA或RNA分子的分子機(jī)理。

    承擔(dān)科研項目情況:
    代表論著:
    1. Yang, H.#, and Patel, D.J.# A type III-E CRISPR Craspase exhibiting RNase and protease activities. Cell Res, 2022, 32:1044-6.
    2. Wang, B., Zhang, T., Yin, J., Yu, Y., Xu, W., Ding, J.#, Patel, D.J.#, and Yang, H.# Structural basis for self-cleavage prevention by tag:anti-tag pairing complementarity in type VI Cas13 CRISPR systems. Mol Cell, 2021, 81:1100-15 e1105.
    3. Wang B, Xu W, Yang H#. Structural basis of a Tn7-like transposase recruitment and DNA loading to CRISPR-Cas surveillance complex. Cell Res, 2020, 30:185-7.
    4. Yang H# and Patel DJ#. CasX: a new and small CRISPR gene-editing protein. Cell Res, 2019, 29:345-6. (# co-corresponding authors)
    5. Guo TW*, Bartesaghi A*, Yang H*, Falconieri V, Rao P, Merk A, Eng ET, Raczkowski AM, Fox T, Earl LA, Patel DJ & Subramaniam S. Cryo-EM structures reveal mechanism and inhibition of DNA targeting by a CRISPR-Cas surveillance complex. Cell, 2017, 171:414-426. (* co-first authors)
    6. Yang H# and Patel DJ#. Inhibition mechanism of an anti-CRISPR suppressor AcrIIA4. Mol Cell, 2017 67:117-127. (# co-corresponding authors)
    7. Yang H# and Patel DJ#. New CRISPR-Cas systems discovered. Cell Res, 2017, 27:313-4. (# co-corresponding authors)
    8. Yang H#, Gao P, Rajashankar KR, and Patel DJ#. PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease. Cell, 2016, 167:1814-28. (# co-corresponding authors)
    9. Gao P, Yang H, Rajashankar KR, Huang Z, and Patel DJ. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res, 2016, 26:901-13.
    10. Lee M, Choi Y, Kim K, Jin H, Lim J, Nguyen TA, Yang J, Jeong M, Giraldez AJ, Yang H, Patel DJ, and Kim VN. Adenylation of maternally inherited microRNAs by Wispy. Mol Cell, 2014, 56:696-707.
    11. Yang H, Zhang T, Tao Y, Wang F, Tong L, and Ding J. Structural insights into the functions of the FANCM-FAAP24 complex in DNA repair. Nucleic Acids Res, 2013, 41:10573-83.
    12. Li S, Du J, Yang H, Yin J, Ding J, and Zhong J. Functional and structural characterization of DNMT2 from Spodoptera frugiperda. J Mol Cell Biol, 2013, 5:64-6.
    13. Zhang T*, Péli-Gulli*, Yang H, De Virgilio C, and Ding J. Ego3 functions as a homodimer to mediate the interaction between Gtr1-Gtr2 and Ego1 in the EGO complex to activate TORC1. Structure, 2012, 20:2151-60.
    14. Yang H, Zhang T, Tao Y, Wu L, Li H, Zhou J, Zhong C, and Ding J. Saccharomyces cerevisiae MHF complex structurally resembles the histones (H3-H4)2 heterotetramer and functions as a heterotetramer. Structure, 2012, 20:364-70.
    15. Yang H*, Wang J*, Du J, Zhong C, Zhang D, Guo H, Guo Y and Ding J. Structural basis of immunosupperssion by the therapeutic antibody daclizumab. Cell Res, 2010, 20:1361-71. (* co-first authors)
    16. Du J, Yang H, Zhang D, Wang J, Guo H, Peng B, Guo Y and Ding J. Structural basis for the blockage of IL-2 signaling by therapeutic antibody daclizumab. J Immunol, 2010, 184:1361-8.
    17. Du J*, Yang H*, Peng B, and Ding J. Structural modeling and biochemical studies reveal insights into the molecular basis of the recognition of beta-2-microglobulin by antibody BBM.1. J Mol Recognit, 2009, 22:465-73. (* co-first authors)
    18. Du J, Yang H, Guo Y and Ding J. Structure of the Fab fragment of therapeutic antibody Ofatumumab provides insights into the recognition mechanism with CD20. Mol Immunol, 2009, 46:2419-23.
    19. Du J, Hou S, Zhong C, Lai Z, Yang H, Dai J, Zhang D, Wang H, Guo Y and Ding J. Molecular basis of recognition of human osteopontin by 23C3, a potential therapeutic antibody for treatment of rheumatoid arthritis. J Mol Biol, 2008, 382:835-42.
    獲獎及榮譽(yù):
    研究組成員: